Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae.

نویسندگان

  • Jin Zhang
  • Tracey A Ruhlman
  • Jamal Sabir
  • J Chris Blazier
  • Robert K Jansen
چکیده

Although gene coevolution has been widely observed within individuals and between different organisms, rarely has this phenomenon been investigated within a phylogenetic framework. The Geraniaceae is an attractive system in which to study plastid-nuclear genome coevolution due to the highly elevated evolutionary rates in plastid genomes. In plants, the plastid-encoded RNA polymerase (PEP) is a protein complex composed of subunits encoded by both plastid (rpoA, rpoB, rpoC1, and rpoC2) and nuclear genes (sig1-6). We used transcriptome and genomic data for 27 species of Geraniales in a systematic evaluation of coevolution between genes encoding subunits of the PEP holoenzyme. We detected strong correlations of dN (nonsynonymous substitutions) but not dS (synonymous substitutions) within rpoB/sig1 and rpoC2/sig2, but not for other plastid/nuclear gene pairs, and identified the correlation of dN/dS ratio between rpoB/C1/C2 and sig1/5/6, rpoC1/C2 and sig2, and rpoB/C2 and sig3 genes. Correlated rates between interacting plastid and nuclear sequences across the Geraniales could result from plastid-nuclear genome coevolution. Analyses of coevolved amino acid positions suggest that structurally mediated coevolution is not the major driver of plastid-nuclear coevolution. The detection of strong correlation of evolutionary rates between SIG and RNAP genes suggests a plausible explanation for plastome-genome incompatibility in Geraniaceae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae

Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nu...

متن کامل

Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nuc...

متن کامل

Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions.

Angiosperm plastid genomes are generally conserved in gene content and order with rates of nucleotide substitutions for protein-coding genes lower than for nuclear protein-coding genes. A few groups have experienced genomic change, and extreme changes in gene content and order are found within the flowering plant family Geraniaceae. The complete plastid genome sequence of Pelargonium X hortorum...

متن کامل

Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium

Geraniaceae have emerged as a model system for investigating the causes and consequences of variation in plastid and mitochondrial genomes. Incredible structural variation in plastid genomes (plastomes) and highly accelerated evolutionary rates have been reported in selected lineages and functional groups of genes in both plastomes and mitochondrial genomes (mitogenomes), and these phenomena ha...

متن کامل

Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates.

Geraniaceae plastid genomes are highly rearranged, and each of the four genera already sequenced in the family has a distinct genome organization. This study reports plastid genome sequences of six additional species, Francoa sonchifolia, Melianthus villosus, and Viviania marifolia from Geraniales, and Pelargonium alternans, California macrophylla, and Hypseocharis bilobata from Geraniaceae. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2015